

Population Genetics Student Worksheet - Tiritiri

New Zealand NCEA Achievement Standard 91157, Bio 2.5 (4 credits) Ext Ass.

Evolution is the underlying theme of all biology of all biology and _____

_impacts profoundly on how evolutionary processes occur.

Darwin's published theory of Evolution in *Origins of Species* in 1859 has been heavily criticised to the present day, but is continually supported by new evidence, observations and in particular the recent advances in DNA sequencing. **Definitions of Evolution**:

- is the process by which changes are brought about and a new species develops.
- is genetic changes in populations that over generations lead to new types of organisms.

Natural Selection is ______ of evolution and can only work

if there is genetic variety which is brought about by mutation, crossing over and the other

aspects as given in (A) below. Read more on Natural Selection: stabilising, directional and disruptive. Take time to read about both Darwin and Wallace and how they both proposed Natural Selection but were different ages and lived vastly different lifestyles. Environmental influences ? Meta Larmarckism - research Ted Steele. http://en.wikipedia.org/wiki/Edward J. Steele.

Two themes covered in Biology 2.5 NCEA Genetics Topic

A. How variation appears in the gametes of sexually reproducing individuals:- (Covered class)

- mutation,
- crossing over and recombination of chromatids during meiosis prophase 1
- independent assortment and segregation of chromosomes during meiosis
- random joining up of gametes during fertilization
- mate selection with the combination of two different parental genomes at fertilisation

B. What processes act on the phenotypic variation that we see in the populations around us, known as population genetics. (The focus for presentation from Educator of Tiritiri)
 The key concepts in Population Genetics are the following processes that bring about the formation of new species ie speciation:-

1. Natural Selection
2. Genetic drift:
- bottleneck effect
- founder effect
Migration – immigration & emigration

With Natural Selection the focus is on environmental pressures which act differentially on particular phenotypes.

- This means better adapted phenotypes survive to breed.
- 'Fitter' individuals ______than those unsuited to the environment.
- The alleles of 'fitter'
- 'Fitter' individuals have their

Genetic drift occurs where there can be a

eg a key breeding organism may die out who has either a dominant or a recessive allele and this is lost to that population. This can occur in all populations but is much more pronounced in small populations such as in a starting

Genetic drift is not to be confused with natural selection. Genetic drift is random, natural selection is not. With natural selection the focus is on environmental pressures which act differentially on particular phenotypes so that better adapted phenotypes survive to breed and have their _____

Bottleneck effect occurs when a _____ due to an

environmental factor eg earthquake, fire, habitat loss, floods, translocations, purges. The population then recovers in numbers over successive generations.

However, the gene pool has little genetic variation eg the Chatham Island black robin which was drastically reduced to 5 birds with only one breeding female. Numbers are now in the 200 range. The 250 remaining takahē we have in New Zealand and the kākāpō population are examples of bottleneck effect.

Founder effect _____

_____a new

population. A new area is colonised. Tiritiri Matangi Island has founder populations with the translocated animals that have been brought to the island eg kokako, takahe, hihi, tieke, weta punga, tuatara and nine others, (miromiro/Nth. Is. tomtit did not establish a population).

With founder effect, as with bottleneck, the gene pool does not have the same level of variation that the original population had.

Refer to the following chart for the total 16 translocated animals to Tiritiri Matangi.

Bird Species European/Common name	Māori name	Alternative names	Status	Seen	Probably seen	Heard (not seen)	In total 16
Australasian harrier	kahu		NO			Seeily	founder
bellbird	korimako		ΕO				species
brown quail			I				species
brown Teal	pāteke		ET				initiated on
fantail	pīwakawaka		NO				
fernbird	mātātā		ET				Tiritiri
grey warbler	riroriro		ΕO				Matangi
kaka	kākā		ΕO				iviataligi.
little spotted kiwi	kiwi pukupuku		ET	Nocturr	nal, unlikely to be	seen.	The highlighted
kingfisher	kōtare		ΝΟ				twelve bird species
little penguin	kororā	blue penguin	ΝΟ				plus the following
morepork	ruru		NO				animals have been
NZ pigeon	kererū/kūkupa		ΕO				translocated to
Nth Is kokako	kōkako	blue-wattled crow	ET				Tiritiri:
Nth Is robin	toutouwai		ET				• tuatara
Nth Is saddleback	tīeke		ET				e shore skink
paradise shelduck	pūtangitangi		ΕO				• shore skink
red-crowned parakeet	kākāriki		ET				(mokomoko)
rifleman	tītitipounamu		ET				 Duvaucel's
silvereye	tauhou		NO				gecko
spotless crake	pūweto		NO				 wētā punga
stitchbird	hihi		ET	The Welc	ome Swallow wa	s a rare vagra	ant from Australia until 1958
tomtit	miromiro	Nth Is pied tit	ETx	when firs	t breeding was re	corded at Aw	vanui, Kaitaia. Spread has
pukeko	pūkeko	swamp hen	ΝΟ	been spe	ctacular since the	n and is now	common throughout NZ. The
takahe	takahē	Notornis	ET	white fac	ced heron was occ	asionally rep	orted from 1865 to 1930s
tui	tūī	parson bird	ΕO	breeding	here in 1932 at In	vercargill. N	ow classed as a pest. All
welcome swallow			ΝΟ	three are	self introduced a	nd will be bo	ttlenecked populations.
whitehead	pōpokatea		ET	Recent p	elicans ?		
Coastal Birds			L				& T = Translocated to Tiritiri
Arctic skua	hākoakoa		NS				
Australasian gannet	tākapu		NS			0	= Originally on Tiritiri
black-backed gull	karoro	Dominican or kelp gull	NO			s	= Surrounding waters
Buller's shearwater	rako		NS			N	= Native, breeds in NZ
Caspian tern	taranui		NO			an	id other countries eg silvereye.
Fluttering shearwater	pakahā		NS			E	= Endemic, restricted to
little shag	kawau paka		NO			br	eeding in one country eg kiwi
New Zealand dotterel	tuturiwhatu		E				INZ.
pied shag	kāruhiruhi		NO				= Introduced by humans,
New Zealand dotterel	tuturiwhatu		E			nc nc	ow breeding here eg quall.
red-billed gull	tārapunga	silver gull	NO			Тх	= Translocated. No
reef heron	matuku-moana		NO			or	igoing breeding population.
variable ovstercatcher	tōrea		ΕO				ay see visiting-vagrant tomtits
white-faced heron			NO				1
white-fronted tern	tara		NO				4
Others - seasonal							4
long-tailed cuckoo	koekoeā		FO				4
							4
	pipiwnarauroa						

Case Studies - Three Founder Populations on Tiritiri Matangi Island

1. The Takahē

Takahē belong to the same family as the successful pūkeko but was thought to be extinct until the rediscovery of c. 250 birds in the Murchison Mountains of Fiordland in 1948. Their numbers surviving in the wild have declined, fluctuating between 110 and 160 birds. Two takahē, both males (Mr Blue and Stormy) were released on Tiritiri in 1991, followed by one female (JJ) in 1992. Further releases have occurred since then and many birds have been hatched on Tiritiri Matangi. The total population on Tiritiri Matangi at present is 5 birds.

Smith, C. (2013). Pers comm.

Takahē are showing signs of **inbreeding depression** () as a result of

siblings mating, parents mating with siblings and all producing young.

Lower fitness signs are:-

- 1. Inviable_____
- 2. Infant
- 3. Increased
- 4. Less
- 5. A greater probability_____
- 6. More

Inbreeding increases the proportion of homozygotes in the population in a way similar to self-fertilisations:-

Roberts A, Sinclair M., (2013) ESA Study Guide Level 3 Biology, ESA Publications (NZ) Ltd. P209 Management: The Takahē Recovery Programme is focusing on out breeding by exchanging Tiritiri birds with other takahē sites around New Zealand.

2. The stitchbird - hihi

Ewen, J.G. (2013). Pers comm.

Hihi (stitchbirds) were reduced to a population on Te Hauturu-o-Toi/Little Barrier Island (LBI) due to mammalian pests and habitat destruction on the mainland. On analysis it has been found that hihi on LBI have a surprisingly high genetic diversity given that the population on LBI has been isolated from the mainland for 17 000 yrs.

Question:

How did the hihi maintain their genetic diversity even though they've been long isolated?

Tiritiri Matangi Education

Drivers for the hihi genetic diversity:

- LBI has a reasonable population size of hihi (estimated in the low thousands).
- The hihi mating system is ______with about ______ resulting from extra pair copulations (EPCs) and these are found in 87% of nests. Most of the extra pair fertilisations (EPFs) result from forced copulations.

Note 1 : Nc/Ne Extension for NCEA Level 2

Ne/Nc is a very important concept in population ecology and population genetics.

Nc is the census population size – i.e. how many individuals in the population. Ne is the effective population size – that is how many of those individuals are actually contributing genetic material across generations. Ne is normally much smaller than Nc and can be difficult to estimate. Certainly we should NOT use Nc to represent Ne in population genetics. *Note: although the Tiri hihi population is high, the alpha males produce more sperm.* With the mating system of hihi, relative to other species, Ne is much closer to Nc. This means, all else being equal, hihi will conserve more genetic material than other species of the same Nc.

Question:

How are the females able to be selective when forced copulation is occurring?

Possibles.

- 1. Are females **being selective through behavioural responses?** For example are they actually choosing who to accept copulations from despite frequent male force in copulations
- 2. Are they able to reject sperm after copulation by ejecting sperm along with faeces?
- 3. Is there a **passive compatibility** for the distantly related sperm to fertilise the eggs ie protein attracters of some description? And vice versa is the closely related sperm not compatible?
- 4. Females are known to store sperm but the method is unknown.
- 5. Is there a fertile window or a last male precedence?
- 6. Unanswered at present.

Tiritiri Matangi Hihi Translocations.

Hihi were translocated to Tiritiri Matangi from LBI in August/September 1995. By the first October only four females and 12 males were accounted for but the four females bred well that summer and the following year more hihi were brought to Tiritiri Matangi to supplement the initial surviving population. A further 20 hihi (6 females & 12 males – all 6 females bred, the 12 males did not bred on Tiri) were brought from LBI in 2010 for genetic management. This is the focus of a study to determine how well the genetic material from LBI integrates into the established Tiritiri Matangi population.

Note 2 Number of hihi birds to Tiritiri Matangi.

- 1. 38 from LBI in 1995 (20 male and 18 female)- by that first breeding season were down to only 12 male and 4 female.
- 2. 13 from LBI in 1996 this was to bolster the number of founders and consisted 4 males and 9 females.
- 3. Over a range of years there has been a total of 16 hihi released from Mount Bruce.

The three groups add up to the **67 hihi that were translocated to Tiritiri** as represented in the Figure 1. of Brekke et al Molecular Ecology.

Since that study was completed **another 20 hihi from LBI** (in 2010) have been added : 13 males and 7 females.

The Tiritiri hihi population increased at a rapid rate due to:-

- supplementary feeding,
- intensive management (supply of nest boxes to match the demand of increasing hihi population numbers)
- the removal of parasites/mite control
- their promiscuous behaviour

A good deal of the genetic diversity has been maintained that is present on LBI. Genetic drift has not been so evident. However, on study of the genetics of the Tiritiri Matangi hihi birds it's evident that there has been a bottleneck on Tiritiri Matangi.

Contrast this situation with Kapiti Island on the west coast at the bottom of the North Island where hihi were also translocated from LBI. In contrast to the Tiritiri Matangi population the population on **Kapiti did not increase in size for a long time and it became dominated by random genetic drift ie random change in the allele frequency.** The factor that may have contributed to this:

• the population were not initially intensely managed with supplementary feeding.

The terrain is harder to move round on.

The population on Kapiti only started to increase in size once ad libitum feeding, where the amount of supplemental food increases as the population increases, was put in place in 2000 for all year round. No parasite control occurs. Nests are largely in natural cavities. Now the population is approximately the same size as on Tiritiri Matangi

3. The Little Spotted Kiwi - Kiwi pukupuku

The Little Spotted Kiwi is the second rarest of the five species of kiwi. It was probably the most common kiwi species in New Zealand in the mid-1800s, but disappeared rapidly on the mainland. Fortuitously, a secure population was established on Kapiti Island from five birds collected in South Westland in 1912. This population on Kapiti Island has flourished and reached approximately 1200 birds in 2008.

In July 1993, five pairs of Little Spotted Kiwi were transferred from Kapiti Island to Tiritiri Matangi, but one of the males died shortly after release due to entanglement of his radiotransmitter. Another of the males died in a flood in August 1994. Neither of these males bred while on Tiritiri Matangi and so within 13 months, the founder population had dropped to a maximum of three males and five females. A further two pairs and two males were introduced from Kapiti Island in July 1995, bringing the founding population up to a maximum of 14 birds; seven males and seven females.

Genetic research at Victoria University of Wellington has established that Little Spotted Kiwi have the lowest genetic diversity, in terms of mean number of alleles per locus of the five kiwi species. Furthermore, Little Spotted Kiwi have very low genetic diversity compared with most bird species studied. The species will therefore have very limited genetic variation, which is likely to lead to inbreeding and reduced survival and/or breeding success. Reduced genetic variation will also result in less resistance within the population to new diseases or other challenges they are exposed to. The new bottleneck created during the establishment of Little Spotted Kiwi on Tiritiri Matangi has led to further loss of genetic diversity in this population. The population of Little Spotted Kiwi is very well established on Tiritiri Matangi with 80-100 birds. (Robertson *et al* 2012)

Bibliography

- Armstrong, D. P., Ewen, J. G., & Lambert, D. M. (1999). Floater males gain reproductive success through extrapair fertilizations in the stitchbird. In Ecology Group, Institute of Natural Resources, Massey University, Animal Behaviour (pp. 321-328).
- Adams, L,. Armstrong, D.P., Blackburn. T.M., Chauvenet, A.L.M., Ewen, J.G., Pettorell, N., Walker, L.K. (2011). Does supplemental feeding affect the viability of translocated populations? The example of the hihi. Animal Conservation, 2012, The Zoological Society of London.
- Bennett, P.M., Brekke, P., Ewen, J.G., Santure, A.W. (2010). *High genetic diversity in the remnant island population of hihi and the genetic consequences of re-introduction*. Molecular Ecology (2011) 20, 29–45.
- Endemic Birds. (2010). Retrieved from Tiritiri Matangi Open Sanctuary: http://www.tiritirimatangi.org.nz/endemicbirds Henney, R. Shepherd, P. (2012) Life Processes Ecology and Evolution NCEA Level 2. Pearson.
- Robertson, H. A., & Colbourne, R. M. (2012). Status of Little Spotted Kiwi (Apteryx owenii) on Tiritiri Matangi Island, Hauraki Gulf.

Exemplar: Population Genetics Question from External Bio 2.5 NCEA paper in 2012

Level 2 Biology, 2012 91157 Demonstrate understanding of genetic variation and change QUESTION THREE: CHANGES IN A GENE POOL

Changes occur in the gene pool of populations over time. Examples in New Zealand include tussock grasses and the Chatham Island black robin.

Discuss how genetic drift, natural selection and migration can contribute to these changes.....

You should refer to the examples given, or any other New Zealand examples to help to clarify your answer.

QUESTION THREE. Assessment Schedule. Note knowledge of population genetics in the given or other named New Zealand examples is needed.

Evidence	Achievement	Merit	Excellence
Genetic drift: Chance change in allele frequency of a population. Natural selection: Individuals most adapted to the environment will survive and reproduce. Migration: Individuals moving into or away from the area. EXPLANATIONS: Genetic drift: Frequency of the alleles can change through chance especially if the population is or becomes small Natural Selection: Many individuals with alleles most adapted to the environment will survive and reproduce and pass these favourable genes to their offspring Migration: If added alleles are inheritable (implies breeding), the frequency of these will increase or vice versa. Gene frequency is the % of each	Defines genetic drift natural selection migration.	Explain how these contribute to changes in gene pool: genetic drift natural selection migration using the named species or other NZ examples.	In discussion provide links between: genetic drift natural selection migration using the named species or other NZ examples.
allele in a gene pool. Note : accept use of "gene" if "allele" has been used and clearly understood			

